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Motivation

* Neural circuits cannot perfectly represent the sensory world: their capacity is limited by the number of neurons, response variability (noise)
and various biophysical constraints [1].

* These limited resources should be allocated to represent the stimuli that matter, either because they are frequent or critical for obtaining reward.

» Can a recurrent neural network achieve this goal with simple, biologically plausible synaptic plasticity rules [2]7

Network architecture tasks Stochastic nonlinear network dynamics (rate-based):
noise
Sa
Y $° - B - |
/ \ | d?“,,;: R - | ZwijTj—i_Zciij(@)—i_bi dt—FUCZBZ
5 o M. — — R : :
8 s:(0) O D or .
g ; ‘ l l — Energi/ [4]: o
= ‘ | classify E=—- w.rr + _/ Flr)drs — S cisiri — S b,
> — 2 @ | input 2%:]];30 " %:” >
= |
. : 1  E@sw)
time input layer recurrent network p(r|s(0) W) = € o2
Deriving a synaptic plasticity rule
Optimize a task-specific objective function: by stochastic gradient ascent: giving a synaptic update:
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Learning task-specific representations Prior statistics and internal noise
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» Learned tuning curves tend to cluster in task-relevant regions of the stimulus space » Networks show reduced firing and decreased performance for
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* The network performs better for more probable stimuli in both tasks * Networks with higher noise learn to emphasize recurrent

connectivity, and develop noise compensation mechanisms

Conclusions

» We derive local plasticity rules that optimize task-specific cost functions, under resource constraints (internal noise and metabolic limitations).

* The model takes advantage of intrinsic network noise to perform stochastic gradient ascent on task objective functions.

* The circuit learns to exploit natural input statistics by concentrating neural resources around frequent stimuli, with a corresponding improvement in performance.
» Future work: time-dependence [3], unsupervised learning, simultaneously learning several tasks.
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