
NYU
NEUROSCIENCE
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•  Neural circuits cannot perfectly represent the sensory world: their capacity is limited by the number of neurons, response variability (noise) 
 and various biophysical constraints [1].

• These limited resources should be allocated to represent the stimuli that matter, either because they are frequent or critical for obtaining reward.

•  Can a recurrent neural network achieve this goal with simple, biologically plausible synaptic plasticity rules [2]? 

•  We derive local plasticity rules that optimize task-specific cost functions, under resource constraints (internal noise and metabolic limitations).
•  The model takes advantage of intrinsic network noise to perform stochastic gradient ascent on task objective functions.
•  The circuit learns to exploit natural input statistics by concentrating neural resources around frequent stimuli, with a corresponding improvement in performance.
•  Future work: time-dependence [3], unsupervised learning, simultaneously learning several tasks.
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Deriving a synaptic plasticity rule
Optimize a task-specific objective function:

metabolic constraints

giving a synaptic update:by stochastic gradient ascent:

*Similar local update rules for , ,

Network architecture Stochastic nonlinear network dynamics (rate-based):

Energy [4]:

accuracy
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sharp prior

Learning task-specific representations Prior statistics and internal noise

•  Learned tuning curves tend to cluster in task-relevant regions of the stimulus space

•  The network performs better for more probable stimuli in both tasks •  Networks with higher noise learn to emphasize recurrent
 connectivity, and develop noise compensation mechanisms

•  Networks show reduced firing and decreased performance for
 unlikely stimuli. 
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