
Idea: train different RNNs to solve a task, probe effects of ‘lesions’/‘inactivation’.

Here we focus on simple evidence integration tasks, a popular target for causal studies. 
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Lesions are an often-used experimental tool for studying the contribution of individual brain circuits 
to behavior, but their interpretation can be difficult. 
  

The network successfully learns a low-dimensional approximation of sensory integration. 

NN lesions decrease sensitivity and 
increase reaction time, with strong lesions 
leading to complete loss of function.

Changes in function can be
modeled as a supercritical
pitchfork bifurcation.

The bifurcation criterion (C)
is monotonically related to
task performance.

Results of lesion studies should be interpreted with caution: constantly learning networks
compensate for lesions and may not show a clear loss of function after a short period
of time. Networks with redundant or parallel architectures may be resistant to lesions as well.

 What does it mean when a lesion has no effect on behavior?
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Lesions in a network with parallel architecture can have little to no effect. 

Lesions that target a single functioning
attractor cause total loss of function;
Lesions that target one of two attractors
do not disrupt function.

Diverse solutions: 1 or 2 bistable 
attractors.
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Perturbed networks relearn
faster than the training time.

Transient inactivation significantly slows
relearning.

Retrained networks
arrive at similar
integration behavior.

The bifurcation criterion is restored after relearning.

Relearning time is linearly correlated with
lesion magnitude.

Relearning Restores Function

Inactivation techniques that allow intermixing perturbed and unperturbed trials slow down
relearning, making results interpretable.

Time course of inactivation effects should be monitored.

Networks solve sensory integration tasks by learning a low-dimensional bistable attractor. The
integrity of the attractor predicts the effect of lesions.

Pitchfork bifurcation explains network function and perturbation effects
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