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Motivation

* Neural circuits cannot perfectly represent the sensory world: their capacity is limited by the

| earning efficient, task-dependent representations with synaptic plasticity

number of neurons, response variability (noise) and various biophysical constraints.

* These limited resources should be allocated to represent the stimuli that matter, either because

they are frequent or critical for obtaining reward.

« Can a recurrent neural network achieve this goal with simple, biologically plausible synaptic

plasticity rules?
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Deriving a task-dependent synaptic plasticity rule

Optimize a task-specific objective function:
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by stochastic gradient ascent:
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*Similar local update rules for C, b, D
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Learning task-specific representations
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* Learned tuning functions are concentrated in the task-relevant region.
» Better performance for frequent stimuli.
The effects of internal noise
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* Firing rates decrease, more

* Recurrent dynamics
important when noise high.

so for more probable stimuli.
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The effects of prior statistics - [
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* reduced firing and * no change in tuning; * produces minor changes
decreased performance iIncreased bias at the in tuning, and large
for unlikely stimuli. classification boundary. asymmetries in error.
Conclusions

» \We derive local plasticity rules that optimize task-specific cost functions, under resource constraints
(internal noise and metabolic limitations).

» The model takes advantage of intrinsic network noise to perform stochastic gradient ascent on task
objective functions.

* The circuit learns to exploit natural input statistics by concentrating neural resources around
frequent stimuli, with a corresponding improvement in performance.

» Future work: time-dependence, unsupervised learning, simultaneously learning several tasks ...
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