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Conclusions

Motivation

References

•  Learned tuning functions are concentrated in the task-relevant region.
•  Better performance for frequent stimuli.

Learning task-specific representations
•  Neural circuits cannot perfectly represent the sensory world: their capacity is limited by the 
 number of neurons, response variability (noise) and various biophysical constraints.

• These limited resources should be allocated to represent the stimuli that matter, either because
 they are frequent or critical for obtaining reward.

•  Can a recurrent neural network achieve this goal with simple, biologically plausible synaptic
 plasticity rules? 

•  We derive local plasticity rules that optimize task-specific cost functions, under resource constraints
 (internal noise and metabolic limitations).
 

•  The model takes advantage of intrinsic network noise to perform stochastic gradient ascent on task
 objective functions.
•  The circuit learns to exploit natural input statistics by concentrating neural resources around 
    frequent stimuli, with a corresponding improvement in performance.
•  Future work: time-dependence, unsupervised learning, simultaneously learning several tasks ...
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Deriving a task-dependent synaptic plasticity rule
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Optimize a task-specific objective function:

resource constraints
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giving a synaptic update:

by stochastic gradient ascent:

*Similar local update rules for , ,

Network architecture
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The effects of prior statistics

•  reduced firing and
 decreased performance 
 for unlikely stimuli.
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•  no change in tuning; 
 increased bias at the 
 classification boundary.
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•  produces minor changes
 in tuning, and large
 asymmetries in error.
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The effects of internal noise

Performance bounds
•  Learn only the decoder, w/
 random weight initialization.

•  Accuracy decreases globally.

•  Firing rates decrease, more 
 so for more probable stimuli.•  Recurrent dynamics 

 important when noise high.
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